挤压型材模具(挤压型材模具厂家)
本篇文章给大家谈谈挤压型材模具,以及挤压型材模具厂家对应的知识点,希望对各位有所帮助。
铝型材挤压加工工艺模具的制造要求有哪些?
铝型材挤压加工工艺模具的制造要求
1、由于铝合金挤压加工模具的工作条件十分恶劣,在挤压过程中需要经受高温、高压、高摩擦的作用,因此,要求使用高强耐热合金钢,而这些钢材的熔炼、铸造、锻造、热处理、电加工、机械加工和表面处理等工艺过程都非常复杂,这给模具加工带来了一系列的困难。
2、为了提高铝型材挤压加工模具的使用寿命和保证产品的表面品质,要求模腔工作带的粗糙度达到0.8-0.4μm,模子平面的粗糙度达到1.6μm以下,因此,在制模时需要采取特殊的抛光工艺和抛光设备。
3、由于挤压产品向高、精、尖方向发展,有的型材和管材的壁厚要求降到0.5mm左右,其挤压铝制品公差要求达到±0.05mm,为了挤压这种超高精度的产品,要求模具的制造精度达到0.01mm,采用传统的工艺是根本无法制造出来的,因此,要求更新工艺和采用新型专用设备。例如:数控车床,数控加工中心以及慢走丝加工等先进高精密度加工设备。
4、铝型材断面十分复杂,特别是超高精度的薄壁空心铝型材和多孔空心壁板铝型材,要求采用特殊的挤压模具结构,往往在一块模子上同时开设有多个异形孔腔,各截面的厚度变化急剧,相关尺寸复杂,圆弧拐角很多,这给模具的加工和热处理带来了很多麻烦。
5、铝型材挤压加工产品的品种繁多,批量小,换模次数频繁,要求模具的适应性强,因此,要求提高制模的生产效率,尽量缩短制模周期,能很快变更制模程序,能准确无误地按图纸加工出合格的模具,把修模的工作量减少到*低程度。
6、由于铝型材挤压加工产品应用范围日趋广泛,规格范围十分宽广,因此,有轻至数千克的、外形尺寸为100mm×25mm的小模子,也有重达2000kg以上的、外形尺寸为1800mm×450mm的大模子。有轻至几千克的、外形尺寸为65mmx800mm的小型挤压轴,也有重达100t以上、外形尺寸为2500mmx2600mm的大型挤压筒。模具的规格和品质上的巨大差异,要求采用完全不同的制造方法和程序,采用完全不同的加工设备。
7、挤压工模具的种类繁多,结构复杂,装配精度要求很高,除了要求采取特殊的加工方法和采用特殊的设备以外,尚需采用特殊的工装卡具和刀具以及特殊的热处理方法。
8、为了提高模具的品质和使用寿命,除了选择合理的材料和进行优化设计以外,尚需采用*佳的热处理工艺和表面强化处理工艺,以获得适中的模具硬度和高表面品质,这对于形状特别复杂的难挤压制品和特殊结构的模具来说显得特别重要。
铝型材挤压模具设计的八大要点
一、铝型材的尺寸及偏差
铝型材的尺寸及偏差是由挤压模具、挤压设备和其他有关工艺因素决定的。
二、选择正确的铝挤压机吨位
选择挤压机吨位主要是根据挤压比来确定。如果挤压比低于10,铝型材产品机械性能低;如果挤压比过高,铝型材产品很容易出现表面粗糙以及角度偏差等缺陷。实心铝型材常推荐挤压比在30左右,空心铝型材则在45左右。
三、挤压模具外形确定
挤压模具的外形尺寸是指挤压模具的外圆直径和厚度。挤压模具的外形尺寸由型材截面的大小、重量和强度来确定。
四、挤压模具模孔尺寸的确定
对于壁厚差很大的铝型材,难成形的薄壁部分及边缘尖角区应适当加大尺寸;而对于宽厚比大的扁宽薄壁型材及壁板型材的模孔,桁条部分的尺寸可按一般型材设计,而腹板厚度的尺寸,除考虑公式所列的因素外,尚需考虑挤压模具的弹性变形与塑性变形及整体弯曲,距离挤压筒中心远近等因素。
此外,挤压速度、有无牵引装置等对模孔尺寸也有一定的影响。
五、合理调整铝金属的流动速度
合理调整铝金属流动速度,就是要尽量保证铝型材断面上每一个质点应以相同的速度流出模孔。挤压模具设计时,尽量采用多孔对称排列,根据铝型材的形状,各部分壁厚的差异和比周长的不同,及距离挤压筒中心的远近,来设计不等长的定径带。
一般来说,铝型材某处的壁厚越薄,周长越大,形状越复杂,离挤压筒中心越远,则此处的定径带应越短。如果当用定径带仍难于控制铝金属流速时,对于铝型材断面形状特别复杂、壁厚很薄、离中心很远的部分,可采用促流角或导料锥来加速铝金属流动。而对于那些壁厚大得多的部分或离挤压筒中心很近的地方,就应采用阻碍角进行补充阻碍,以减缓此处的`流速。
此外,还可以采用工艺平衡孔,工艺余量或者采用前室模、导流模、改变分流孔的数目、大小、形状和位置来调节铝金属的流速。
六、挤压模具强度校核
由于铝型材挤压时模具的工作条件很恶劣,所以模具强度是模具设计中的一个非常重要的问题。除了合理布置模孔的位置,选择合适的模具材料,设计合理的模具结构和外形之外,**地计算挤压力和校核各危险断面的许用强度也是十分重要的。
目前计算挤压力的公式很多,但经过修正的别尔林公式仍有工程价值。挤压力的上限解法,也有较好的适用价值;用经验系数法计算挤压力比较简便。至于模具强度的校核,应根据产品的类型、模具结构等分别进行。
一般平面模具只需要校核剪切强度和抗弯强度。舌型模和平面分流模则需要校核抗剪、抗弯和抗压强度,舌头和针尖部分还需要考虑抗拉强度等。
强度校核时的一个重要的基础问题是,选择合适的强度理论公式和比较**的许用应力。近年来,对于特别复杂的模具,可用有限元法来分析其受力情况与校核强度。
七、合理的工作带尺寸
确定分流组合模的工作带,要比确定半模工作带复杂得多,不仅要考虑到型材壁厚差,距中心的远近,面且必须考虑到模孔被分流桥遮蔽的情况。处于分流桥底下的模孔,由于金属流进困难,工作带必须考虑减薄些。
在确定工作带时,首先要找出在分流桥下型材壁厚更薄处即金属流动阻力更大的地方,此处的更小工作带定为壁厚的两倍;壁厚较厚或金属容易达到的地方,工作带要适当考虑加厚,一般按一定的比例关系,再加上易流动的修正值。
八、模孔空刀结构及尺寸
模孔空刀,就是模孔工作带出口端悬臂支承的结构。当铝型材壁厚≥2mm时,可采用比较容易加工的直空刀结构;当t2mm时,可选择在有悬臂处加工斜空刀。
铝型材挤压模具工作带长度的合理选择与计算-{空心分流模}
引言:
在铝合金型材挤压成形过程中,模具出口处型材挤压速度的均匀性主要受导流室、分流室形状、尺寸和工作带长度的控制。工作带又称定径带,是型材挤压模中垂直模具工作端面并用以保证挤压制品形状、尺寸和表面质量的区段。由于工作带的摩擦阻力可以调整金属流速,在导流室、分流室形状和尺寸一定的条件下,合理设计不等长的工作带长度,可以有效提高型材断面各个部分金属的流速均匀性,从而减少挤压过程中的附加应力和挤压后工件内的残余应力,防止型材的变形与开裂。
在铝型材挤压过程中,挤压模工作带的长度是影响金属流速的重要因素。合理设计工作带的长度,能够使金属在模孔出口处流动均匀,挤出的型材不会产生扭曲、起浪等缺陷。
铝型材挤压模的设计中 ,工作带长度是设计型材模孔更重要的几何参数之一 ,直接影响着制品的质量。工作带又称定径带 ,是型材挤压模中垂直模具工作端面并用以保证挤压制品形状、尺寸和表面质量的区段。对于外形尺寸较小 ,对称性较好 ,各部分壁厚相等或近似相等的简单型材来说 ,模孔各部分的工作带可取相等或基本相等的长度 ,对于断面形状复杂、壁厚差大、外形轮廓大的型材 ,在设计模孔时 ,要借助于不同的工作带长度来调节金属的流速。确定型材模孔工作带长度的基本出发点是保证型材各区段上金属质点的流速均等 ,保证各区段上金属质点的流动应力均等。其影响因素主要是型材横断面的形状和型材区段距挤压筒中心距离。
定义:
1) 什么是挤压模具工作带?其作用和设计原则是什么?
铝材挤压模具的工作带也叫定径带,其作用如下:
1、调整挤压金属的流速,使挤压型材成型;
2、确定型材的外形尺寸,也就是定型,是稳定产品质量的重要部位;
3、确保型材表面的粗糙度,使其光滑,易于表面处理。
?1,挤压模具工作带作用是控制金属流动,稳定制品尺寸和表面质量。
?2,确定原则
?A,更小长度,应能保证稳定挤压铝型材制品截面尺寸,并具有足够的耐磨性。
?B,更大长度,应根据挤压时金属与工作带间更大有效接触长度来确定。
?C,对于角形,丁字形,槽形,工字形,除在各端部受三面摩擦阻力减短工作带外,如在同心圆上的模孔,工作带可以相同。
?D,截面形状复杂且壁厚不等的铝型材,需根据壁厚设计不等长的工作带,在变化悬殊处采取斜过渡,以免在制别上出棱。
工作带是铝材挤压模具中垂直于模具工作端面是用来保证挤压制品的形状、尺寸和表面质量的区段;工作带的长度也是挤压模具设计的重要参数,工作带的长度过短,产品的尺寸难以稳定,也容易产生波纹、椭圆度、压痕、压伤并且造成挤压模具磨损而减低寿命;而工作带过长,则会增大与铝金属的摩擦,增大挤压力,使铝金属粘接在模具上,使制品产生表面擦花,划伤、毛刺、麻面、搓衣板等缺陷。
2)那为什么大部分人会觉得工作带难设计呢?
很多学习挤压模具设计的人都跟我说自己什么都会了就是工作带不会设计,觉得挤压模具设计更难的地方就是工作带设计了。因为工作带较分流孔来讲,比较抽象一些,而且工作带的设计是见人见智,同样一套模具,三个人设计,可能给出的值完全不同,但是可能三套模具都能挤出料来.这又是为什么呢?
1、 首先我们要明白工作带的作用,工作带和分流孔作用一样都是调整铝金属流速的,简单来说就是比较容易流出金属的地方工作带要长一点,比如壁厚大的地方、离挤压中心近的地方工作带都要长一点。所以这取决于工作带**个位置设置的值,如果这个值不同那么其他位置都会相应改变,所以你就会看到不同的工作带设计方案却都能出料。因为它本身是一个相对值而不是**值。
2、分流孔是一个以形取形的图像,所以更容易理解一些。但是在这里我要强调一点,分流模特别大型工业型模具设计中分流孔比工作带设计更重要、更难把握,是挤压模具设计的重中之重。
3、**※ 万变不离其宗:配合料型,适孔适量,孔随型走 ※ **
4、那工作带到底怎么设计呢,工作带的设计是不是真的那么神秘? 其实工作带设计也无非是老生常谈同心圆原理 ,靠近铝型材挤压中心部位金属流速快,则工作带设计的要长些;型材壁厚宽的地方金属流速较快,工作带设计的要长一些,工作带设计的公式以及要遵循的几个要点如下: 工作带设计按照以下公式:
** L=t?K1?K2 **
L-----工作带长度/mm;
t------型材壁厚名义尺寸/mm;
K1---模子材质强度系数(≈1.5~2.0);
K2---模孔位置流速差之比。
可参照以下实例:
1、 首先工作带设计时,以整个铝型材更难出挤出的部分为基准点,取该处工作带长度为成品壁厚的1.5~2倍。然后与基准点相邻部位的工作带长度比基准点工作带 长1mm,依此类推。要注意的是型材厚度相同的部位,如果距离挤压筒中心的距离 相等,则工作带长度应相等。
2、另外从模具中心开始,每远离中心10mm则其工作带 应按比例相应减少 。说到这里你如果还不觉得明白的话,就看看下面的图是否能帮助你理解。
为什么进行铝型材挤压模具修模?
挤压模具是保证铝型材几何尺寸、截面形状和表面质量更重要的生产工具。在挤压模具设计和模具制造过程中,尽管模具设计工程师、模具制造技术人员努力改进工作,不断地提高其技术水平,模具设计包括采用Altair模具有限元分析软件来修正设计缺陷;模具的加工制造包括采用高精度的慢走丝线切割以及采用CNC高精度的加工中心加工,力求设计并制造出尽可能完美的模具,但随着铝型材向大型化、复杂化、精密化、多规格、多用途方面发展。对型材尺寸精度的要求越来越高、对表面质量的要求也越来越严格,以及在挤压生产中各种工艺因素的变化和模具受高温高压下循环摩擦等恶劣因素的影响等,使得用未加修正的模具生产出来的制品难免会出现这样或那样的缺陷。因此在生产过程中除了现场的生产人员根据具体的制品缺陷更改生产工艺选择更恰当的加工操作来修正制品可修正的缺陷外,关键还是要靠修正模具均衡流速,制品的缺陷才能得以解决。
铝型材挤压模具氮化后硬度变化
氮化次数对铝合金挤压模具的影响白云鹏;谭琳;唐荻;周龙;朱莹莹【摘 要】通过对一次、二次、三次氮化的H13模具钢硬度比较、组织观察、挤压生产结果的对比,分析氮化次数对h13模具钢性能与组织的影响.结果表明,三次氮化的模具硬度更高,氮化层厚度为78μm,一次上机使用寿命更长.%The effects of nitriding times on extrusion die of aluminum alloy were analyzed by hardness testing,microstructure analysis and extrusion process.The results show that the three times of nitriding process of H13 die steel have the best hardness,and nitriding layer is 78 μm.Service life of extrusion of the die is the longest.【期刊名称】《铝加工》【年(卷),期】2018(000)001【总页数】5页(P47-50,19)【关键词】H13模具钢;氮化处理;性能;挤压【作 者】白云鹏;谭琳;唐荻;周龙;朱莹莹【作者单位】辽宁忠旺集团有限公司,辽宁辽阳111003;辽宁忠旺集团有限公司,辽宁辽阳111003;辽宁忠旺集团有限公司,辽宁辽阳111003;辽宁忠旺集团有限公司,辽宁辽阳111003;辽宁忠旺集团有限公司,辽宁辽阳111003【正文语种】中 文【中图分类】TG3790 前言H13钢是C-Cr-Mo-Si-V型钢,是一种应用极其广泛的热作模具钢,本厂生产的挤压模具多以H13模具钢为原料[1]。挤压铝型材的很多表面问题均与模具有关,模具工作带硬度和耐磨性不足会严重影响产品表面质量,因此需要对模具进行氮化处理以提高硬度和耐磨性。H13钢中有较多的Cr、Mo等元素,氮化时能生成稳定的氮化物并弥散分布,有利于提高H13钢的硬度、耐磨性、耐蚀性、抗粘结性及抗热疲劳性能[2~3]。因此恰当的氮化工艺不仅可以提高产品表面质量还可以提高生产效率。
本实验主要探究氮化次数对模具的影响,从成分、硬度和金相组织三方面对不同氮化次数的模具钢进行全面分析,并将不同氮化次数的模具钢进行上机挤压试验,综合两方面结果探究出更适合模具挤压的氮化次数。1 实验材料与方法1.1 实验材料本试验以5个10mm×10mm×10mm退火状态的H13模具钢试块及同批次H13模具钢为原料加工的三套相同模具为研究对象,成分如表1所示。使用瑞士ARLMA-283直读光谱仪、HVS-50维氏硬度计、蔡司AX10光学显微镜等设备进行检测。1.2 实验方法取其中1个模具钢试块进行成分、维氏硬度、金相分析,其余4个试块一同进行淬火+回火处理,分别对热处理后一次氮化、二次氮化、三次氮化后试样进行维氏硬度、金相观察。淬火、回火工艺参数如图1所示,氮化工艺如图2所示。在氮化过程中每分钟要滴60滴酒精,使氮化更充分,降温过程中关闭酒精。同时将三套模具分别进行一次氮化、二次氮化、三次氮化,氮化后进行挤压试验,分析模具单次使用寿命与挤压产品表面质量。图1 淬火工艺与回火工艺示意图图2 氮化工艺示意图表1 H13钢成分检测结果(质量分数/%)2 实验结果与讨论2.1 成分检测表1为模具钢成分检测结果,其结果符合国标要求,可以进行正常使用。2.2 硬度测试表2为不同状态下模具钢硬度检测结果。对比氮化与未氮化模具钢的硬度,氮化后的硬度有大幅度提高,是因为氮化后会在外表面形成一层硬度很大的氮化层,因此氮化后硬度大幅度提高。其中二次氮化、三次氮化硬度结果差异并不大,相比一次氮化提高约300HV。表2 H13钢硬度检测结果2.3 宏观分析退火后的模具钢主要为珠光体与粒状渗碳体组织,渗碳体分布均匀且无网状,退火组织比较理想。回火后的组织为回火马氏体,保持淬火后马氏体的片状形态,随着回火温度的升高,马氏体和残余奥氏体发生分解,渗碳体在板条界面弥散、均匀分布。氮化后的基体多数为回火索氏体组织即铁素体与渗碳体的复合组织,二次氮化后开始有向等轴状铁素体转化的过渡组织出现,三次氮化后铁素体以再结晶形式呈等轴状分布,如图3所示。
一次氮化后并没有明显的氮化层,只有一层很薄的硬而脆的白亮化合物层,厚度只有几微米左右;二次氮化后渗氮层厚度有了明显提高,渗氮层主要由两部分组成,即表面的致密氮化层及次表面疏松的扩散层,氮化层约为34μm,扩散层厚度约为45μm;三次氮化后渗氮层结构与二次氮化后渗氮层结构相同,氮化层厚度约为42μm,扩散层厚度约为36μm。通过计算可知,三次氮化后氮化层厚度(78μm)与二次氮化(79μm)相比厚度变化不大,但三次氮化的氮化层的致密度有所提高。图3 模具钢金相照片2.4 挤压验证图4为不同氮化次数模具挤压后型材表面。从表面看,三套模具挤压后表面均无明显的拉毛、颗粒、气泡、夹渣等缺陷,但表面机械纹和划伤程度各有优劣:一次氮化模具挤压后型材机械纹与划伤条纹较重;二次氮化模具挤压后型材机械纹与划伤条纹较轻;三次氮化模具挤压后型材无明显机械纹与划伤条纹,表面较好。这说明随着氮化次数的增加,氮化层厚度增加,工作带硬度增加,相对摩擦力减轻,因此挤压制品机械纹与划伤条纹会减轻,增加氮化次数有利于提高挤压型材表面质量。图4 不同氮化次数模具挤压型材表面通过不同氮化次数模具单次挤压寿命结果可知(见表3),一到三次氮化模具挤压制品数量分别为42支、58支和75支。随着氮化次数增加,单次挤压寿命延长,说明随着氮化次数增加,氮化层厚度增加,工作带硬度增加、耐磨性增加,耐挤压性增强。表3 不同氮化次数模具单次挤压寿命挤压支数/支报废原因42机械纹重58机械纹重75表面划伤3 结论(1)退火状态的模具钢硬度为203HV,淬火+回火状态的模具钢硬度为527HV,一次氮化后硬度为962HV,二次氮化后硬度为1225HV,三次氮化后硬度为1270HV,氮化处理可大幅度提高模具硬度,且随着氮化次数增加,硬度会不同程度增加。(2)从金相结果分析,退火后的模具钢组织主要为珠光体与粒状渗碳体组织,回火后的组织为回火马氏体组织,氮化后的基体多数为回火索氏体组织。
(3)从渗氮层厚度分析,一次氮化后并没有明显的氮化层,只有几微米左右,二次氮化后氮化层约为34μm,扩散层厚度约为45μm,三次氮化后氮化层厚度约为42μm,扩散层厚度约为36μm。(4)一次氮化模具挤压后型材机械纹与划伤条纹较重,二次氮化模具挤压后型材机械纹与划伤条纹较轻,三次氮化模具挤压后型材无明显机械纹与划伤条纹,表面较好。参考文献【相关文献】[1] 肖亚庆,谢水生,刘静安,等.铝加工实用技术手册[M].北京:冶金工业出版社,2005[2] 仇芝蓉.铝型材挤压模具分析[J].冶金丛刊,1998(5):47-50[3] 郭志斌.铝合金型材H13钢挤压模具氮化工艺优选[J].模具技术,2010(1):59-63
¥
5.9
百度文库VIP限时优惠现在开通,立享6亿+VIP内容
立即获取
氮化次数对铝合金挤压模具的影响
因版权原因,仅展示原文概要,查看原文内容请下载
掌桥科研官方
氮化次数对铝合金挤压模具的影响
白云鹏;谭琳;唐荻;周龙;朱莹莹
【摘 要】通过对一次、二次、三次氮化的H13模具钢硬度比较、组织观察、挤压生产结果的对比,分析氮化次数对H13模具钢性能与组织的影响.结果表明,三次氮化的模具硬度更高,氮化层厚度为78μm,一次上机使用寿命更长.%The effects of nitriding times on extrusion die of aluminum alloy were analyzed by hardness testing,microstructure analysis and extrusion process.The results show that the three times of nitriding process of H13 die steel have the best hardness,and nitriding layer is 78 μm.Service life of extrusion of the die is the longest.
第 1 页
【期刊名称】《铝加工》
【年(卷),期】2018(000)001
【总页数】5页(P47-50,19)
【关键词】H13模具钢;氮化处理;性能;挤压
【作 者】白云鹏;谭琳;唐荻;周龙;朱莹莹
【作者单位】辽宁忠旺集团有限公司,辽宁辽阳111003;辽宁忠旺集团有限公司,辽宁辽阳111003;辽宁忠旺集团有限公司,辽宁辽阳111003;辽宁忠旺集团有限公司,辽宁辽阳111003;辽宁忠旺集团有限公司,辽宁辽阳111003
铝型材挤压模具出现问题怎么解决?
铝型材挤压模具出现的问题及其解决方法如下:
1、挤压模具生产出来的铝型材要符合尺寸要求,首先要保证金属流动的均匀性,挤出来的型材常有凹心现象,导致整个大面下陷,平面度不达标。通过大量实践得出结论,针对槽位较深较大的型材是由于槽位金属供料不足所引起的。铝型材挤压模具制造时应保证模具槽位足够直通,如试产未合格就适度加宽槽位。对于凹槽深度宽度不大型材,只要合理设计工作带,导流槽按模颈角度加工,控制好金属流速可以避免凹心现象;对于凹槽较宽且深的型材,则将两角位导流槽加深,保证槽内两角金属流动与中间均匀。
2、在生产有角度型材时,若在模具未经预变形(预张口)设计的情况下,挤出型材经拉伸矫直后,型材角度往往比产品要求小1-3°,模具在设计制造环节,需在模具工件的型材孔做好1-3°的变形量,型材变形量随着外按圆的变化而变化。一旦型材角度在做好预变形的情况还出现角度小(收口)现象,可采用以下两种简单的修复方法:其一,如角度小(收口)可在内侧做促流。其二,可在外侧焊阻流块。方法选定取决于型材表面处理。
3、生产壁厚较厚的型材,按常规放缩水量生产,型材末端出现金属供料不足,导致放缩水产生误差,尽管模子型孔尺寸一致,但产品尺寸却不符合要求。控制型材尺寸有几个重要因素。首先,设计导流板时根据所属吨位机台,结合挤压筒与铝棒直径,择取更大更优外接圆,确定导流板入料孔,并且增加两端型材上方金属供给量;其次,模子入料面一级焊合室,两端避开量取值大,保证两端金属流动的稳定性,并且保证两端型材上方金属供给量,有利于型材平面度及表面质量;更后型材孔根据以往生产相近的型材,做好预变形。当设计一新型材时,可找相近的型材,以它的一组参数为初始参数进行尝试设计,然后逐步调整各参数直到符合所需的要求为止。
4、在模具满足使用要求的情况下,挤压出来的型材表面在有螺丝孔或中横处存在凹槽缺陷,影响型材表面质量。通过实践得出结论,在加工模具时,调节上模与下模工作带的出口位置,工作带过渡要求平滑。导流槽下空刀和穿孔下空刀工作带需减短(提高)0.3-1.0mm,并打顺导流槽,保证适合的金属供料。较厚型材甚至需减短(提高)2mm,以保证型材表面质量。
关于挤压型材模具和挤压型材模具厂家的介绍到此就结束了,记得收藏关注本站。